\(\int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx\) [2703]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 129 \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=-\frac {2 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 \sqrt {2+3 x}}-\frac {16}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {494}{135} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {214}{135} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

[Out]

494/405*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-214/405*EllipticF(1/7*21^(1/2)*(1-2*x)^
(1/2),1/33*1155^(1/2))*33^(1/2)-2/3*(1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2)-16/27*(1-2*x)^(1/2)*(2+3*x)^(1/2
)*(3+5*x)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {99, 159, 164, 114, 120} \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=-\frac {214}{135} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )+\frac {494}{135} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {2 \sqrt {5 x+3} (1-2 x)^{3/2}}{3 \sqrt {3 x+2}}-\frac {16}{27} \sqrt {3 x+2} \sqrt {5 x+3} \sqrt {1-2 x} \]

[In]

Int[((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(2 + 3*x)^(3/2),x]

[Out]

(-2*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(3*Sqrt[2 + 3*x]) - (16*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/27 + (49
4*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/135 - (214*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/
7]*Sqrt[1 - 2*x]], 35/33])/135

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 \sqrt {2+3 x}}+\frac {2}{3} \int \frac {\left (-\frac {13}{2}-20 x\right ) \sqrt {1-2 x}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx \\ & = -\frac {2 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 \sqrt {2+3 x}}-\frac {16}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {4}{135} \int \frac {-\frac {305}{4}-\frac {1235 x}{2}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx \\ & = -\frac {2 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 \sqrt {2+3 x}}-\frac {16}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {494}{135} \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx+\frac {1177}{135} \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx \\ & = -\frac {2 (1-2 x)^{3/2} \sqrt {3+5 x}}{3 \sqrt {2+3 x}}-\frac {16}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {494}{135} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {214}{135} \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right ) \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.67 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.72 \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=\frac {2}{405} \left (-\frac {15 \sqrt {1-2 x} \sqrt {3+5 x} (25+6 x)}{\sqrt {2+3 x}}-247 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )+140 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right ) \]

[In]

Integrate[((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(2 + 3*x)^(3/2),x]

[Out]

(2*((-15*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(25 + 6*x))/Sqrt[2 + 3*x] - (247*I)*Sqrt[33]*EllipticE[I*ArcSinh[Sqrt[9 +
 15*x]], -2/33] + (140*I)*Sqrt[33]*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33]))/405

Maple [A] (verified)

Time = 1.27 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.09

method result size
default \(\frac {2 \sqrt {1-2 x}\, \sqrt {3+5 x}\, \sqrt {2+3 x}\, \left (132 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-247 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-900 x^{3}-3840 x^{2}-105 x +1125\right )}{405 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(140\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {14 \left (-30 x^{2}-3 x +9\right )}{27 \sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}-\frac {122 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2835 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {988 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{2835 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {4 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{27}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(214\)

[In]

int((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/405*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(132*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2
)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))-247*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Elli
pticE((10+15*x)^(1/2),1/35*70^(1/2))-900*x^3-3840*x^2-105*x+1125)/(30*x^3+23*x^2-7*x-6)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.57 \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=-\frac {2 \, {\left (675 \, {\left (6 \, x + 25\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 1468 \, \sqrt {-30} {\left (3 \, x + 2\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 11115 \, \sqrt {-30} {\left (3 \, x + 2\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )\right )}}{18225 \, {\left (3 \, x + 2\right )}} \]

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x, algorithm="fricas")

[Out]

-2/18225*(675*(6*x + 25)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) + 1468*sqrt(-30)*(3*x + 2)*weierstrassPInv
erse(1159/675, 38998/91125, x + 23/90) + 11115*sqrt(-30)*(3*x + 2)*weierstrassZeta(1159/675, 38998/91125, weie
rstrassPInverse(1159/675, 38998/91125, x + 23/90)))/(3*x + 2)

Sympy [F]

\[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {3}{2}} \sqrt {5 x + 3}}{\left (3 x + 2\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((1-2*x)**(3/2)*(3+5*x)**(1/2)/(2+3*x)**(3/2),x)

[Out]

Integral((1 - 2*x)**(3/2)*sqrt(5*x + 3)/(3*x + 2)**(3/2), x)

Maxima [F]

\[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=\int { \frac {\sqrt {5 \, x + 3} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(5*x + 3)*(-2*x + 1)^(3/2)/(3*x + 2)^(3/2), x)

Giac [F]

\[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=\int { \frac {\sqrt {5 \, x + 3} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(5*x + 3)*(-2*x + 1)^(3/2)/(3*x + 2)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{3/2}} \, dx=\int \frac {{\left (1-2\,x\right )}^{3/2}\,\sqrt {5\,x+3}}{{\left (3\,x+2\right )}^{3/2}} \,d x \]

[In]

int(((1 - 2*x)^(3/2)*(5*x + 3)^(1/2))/(3*x + 2)^(3/2),x)

[Out]

int(((1 - 2*x)^(3/2)*(5*x + 3)^(1/2))/(3*x + 2)^(3/2), x)